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Building up DNA, bit by bit: a simple description
of chain assembly

R. Foffi, †a F. Sciortino, a J. M. Tavares bc and P. I. C. Teixeira *bc

We simulate the assembly of DNA copolymers from two types of short duplexes (short double strands

with a single-stranded overhang at each end), as described by the oxDNA model. We find that the

statistics of chain lengths can be well reproduced by a simple theory that treats the association of

particles into ideal (i.e., non-interacting) clusters as a reversible chemical reaction. The reaction

constants can be predicted either from SantaLucia’s theory or from Wertheim’s thermodynamic

perturbation theory of association for spherical patchy particles. Our results suggest that theories

incorporating very limited molecular detail may be useful for predicting the broad equilibrium features of

copolymerisation.

I. Introduction

The assembly of multifunctional units into linear or branched
architectures is a key ingredient of copolymerisation. In turn,
the properties of copolymers depend crucially on how these
units are arranged, as in alternating, random or block
copolymers.1 Examples are manifold, and we mention just a
few: the stacking transition of single-strand DNA;2 the nature of
the de-mixing instabilities in both coil–coil3 and coil–rod4

polymer blends undergoing polycondensation reactions; the
ability of urethane–urea elastomers to exhibit strain-induced
periodic textures;5 the self-healing nature of poly(methyl
methacrylate)/n-butyl acrylate over a narrow range of composi-
tions;6 and the association of DNA duplexes by stacking
interactions.7–9

The actual sequence of building blocks on individual copo-
lymer molecules is experimentally inaccessible and must be
inferred indirectly, e.g., from the comonomer ratios, or from
details of the synthesis method employed. It would be most
desirable to have a predictive theory for this information that
might be used as input to theories for macroscopic properties,
e.g., elastic or rheological. Such a theory could be readily
validated by computer simulations of copolymerisation.

From a more practical point of view, this approach would have
the added bonus of enabling the ‘reverse engineering’ of
desired polymers: by elucidating which properties of building
blocks (e.g., size, interaction energies) produce which architec-
tures, polymer synthesis could be more effectively directed
towards specific outcomes.

In this paper we propose a theory of association that is able
to predict the frequency of any given sequence of monomers in
the aggregates formed, i.e., the statistics of block lengths. This
extends our earlier work on self-assembly in patchy colloids,10

in which we concerned ourselves with phase separation and
percolation as determined by functionalities and patch inter-
action strengths, but not with the internal structures of aggre-
gates. The theory tries to be as economical as possible and so
forgoes most microscopic detail and treats the bonding of
polymerising units as reversible chemical reactions, governed
by reaction constants. This is then applied to the assembly of
DNA chains from two types of monomers, where each mono-
mer is a DNA duplex, consisting of a double-stranded core with
a short single strand at each end. The reaction constants are
taken either from SantaLucia’s treatment of the nearest-
neighbour model for DNA,11,12 or from Wertheim’s thermody-
namic perturbation theory (TPT) of association for spherical
patchy particles.13,14 Besides its biological relevance, this
model has two advantages with respect to testing our theory:
first, it is the simplest case of linear aggregation, hence no
percolation can occur; second, by tuning the model parameters
we can adjust the interaction energies between different bifunc-
tional building blocks and thus generate a large variety of chain
architectures, allowing for a more thorough and detailed com-
parison between simulation and theoretical predictions. Sev-
eral theoretical approaches to equilibrium polymerisation15,16

and to the statistics of blocks in copolymer chains17 exist.
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Isodesmic equilibrium polymerisation ideas have been applied
to living polymers formed by DNA blunt-end duplexes, aggre-
gating under the effect of stacking interactions.8,9 To the best of
our knowledge none has made a connection with a simple yet
microscopic model, nor allowed for two types of monomer
interacting via more than two bonding energy scales (or reac-
tion constants), as we do. Moreover, experimental work on DNA
constructs has demonstrated their value as a model system for
investigating unconventional aggregation phenomena of pat-
chy colloidal particles.18,19

This paper is organised as follows: in Section II we expound
our theory and show how it is related to Wertheim’s TPT. We
also discuss briefly how it can be generalised to more than two
types of monomer. Then in Section III we describe the micro-
scopic DNA model used in our simulations. Results are pre-
sented in Section IV, and conclusions drawn in Section V.

II. Theory
A. A minimal description of linear aggregation

Our system consists of a binary mixture of NA particles of
species A, each decorated with two bonding sites (‘patches’)
of type A, and NB particles of species B, each decorated with two
bonding sites of type B, in a volume V. The total number of
particles is thus N = NA + NB, and their mole fractions are
xA � NA/N and xB � NB/N = 1 � xA.

Each of the two sites can participate in at most one bond to
another site, so a given particle (of species A or B) can bond to at
most two other particles (linear aggregation). We shall regard the
formation of an ab bond as a reversible chemical reaction between
an unreacted site of type a and one of type b (a, b = A, B). If we now
assume that both sites and bonds behave as ideal gases, then the
equilibrium constant for this reaction is given by20

Kab ¼
P�ab
P�aP

�
b
� exp �bDGab

� �
; (1)

where P�k is the ratio of the partial pressure of sites or bonds of
type k (k = a, b or ab) at equilibrium to some reference pressure Pref,
b = 1/kBT with kB the Boltzmann constant and T the temperature,
and DGab is the change in Gibbs free energy on forming an ab bond.
Because we are assuming that all sites and bonds k behave as ideal
gases, we have

P�ab ¼
NabkBT

PrefV
; (2)

P�a ¼
MakBT

PrefV
; (3)

where Nab is the number of ab bonds and M�a is the number of
unreacted sites of type a. Using eqn (2) and (3), eqn (1) can be
rewritten as

Kab ¼
Nab

M�aM�b

PrefV

kBT
: (4)

If we further assume that Pref is the pressure of the system when no
‘chemical reaction’ has occurred (i.e., when there are no aggregates

but the same total number of sites is present) then Pref = 2NkBT/V
(recall there are two sites per particle), whence

Kab ¼ 2N
Nab

MaMb

: (5)

We note that this result can be given a microscopic interpretation:
in terms of the partition functions of species a, Qa, and of ab dimers
Qab, the condition for chemical equilibrium is21,22

Nab

M�aM�b
¼ Qab

QaQb
¼ Kab

2N
¼

exp �bDGab
� �
2N

; (6)

i.e., the partition functions of particles and bonds are subsumed in
the equilibrium constants, for which we need some prescription.
We shall come back to this point later.

From the above we can now derive the laws of mass action
for the three reactions: %A + %A " AA, %B + %B " BB and %A +
%B " AB, where the overline denotes an unreacted site. Using
the constraints

2NA = 2NAA + NAB + M %A, (7)

2NB = 2NBB + NAB + M %B, (8)

and the usual definitions for the fractions of unbonded A and
B sites,

Xa ¼
M�a

2Na
; (9)

we arrive at the following laws of mass action:

1 � XA = 2xAKAAXA
2 + 2xBKABXAXB, (10)

1 � XB = 2xBKBBXB
2 + 2xAKABXAXB, (11)

Note that in the above expressions we are assuming that no
rings are formed. In the thermodynamic limit (N - N,
V - N), pa = 1 � Xa is the probability that a site of type a
has reacted (i.e., is bonded to another site). Noting that the total
number of sites of type a that participate in ab bonds is
(1 + dab)Nab (with dab the Kronecker delta) and the total number
of sites of type a is 2Na, then the probability of bonding a site of
type a to one of type b is.23

pab ¼ 1þ dab
� �Nab

2Na
: (12)

(Notice that, although Nab = Nba always holds, if Na a Nb then
pab a pba.) From these probabilities, which can be obtained by
solving the laws of mass action, eqn (10) and (11), we can
compute a number of interesting structural quantities. In
particular, we shall derive the statistics of ‘blocks’, i.e., the
probabilities of assembling sequences of contiguous identical
bonds (‘blocks’) of length cab, defined as the number of ab
bonds in the sequence (block).

Let us consider first blocks of identical particles. To make an
A block of length cAA, one starts with a particle of species A
that has one A site not bonded to another A site: there are
NA(1 � pAA) such particles (notice that an A site that is not
bonded to another A site could be either unbonded to any site,
or bonded to a B site). Then one needs to make cAA bonds, each
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with probability pAA, which gives a factor of p‘AAAA . Finally, the
block ends with an A site that is not bonded to any other A site,
hence another factor of (1 � pAA). It follows that the number of
A blocks of length cAA is

nð‘AAÞ ¼ NAp
‘AA
AA 1� pAAð Þ2: (13)

Likewise, the number of B blocks of length cBB is

nð‘BBÞ ¼ NBp
‘BB
BB 1� pBBð Þ2: (14)

Now consider AB blocks of block size cAB, i.e., alternating
sequences of A and B particles. Two cases must be distin-
guished: blocks with either A or B sites at both ends have even
cAB, whereas blocks with an A site at one end and a B site at the
other end have odd cAB. The number of AB blocks with odd
cAB is

nð‘AB; oddÞ ¼ NA 1� pABð Þp ‘ABþ1ð Þ=2
AB p

‘AB�1ð Þ=2
BA 1� pBAð Þ

þNB 1� pBAð Þp ‘ABþ1ð Þ=2
BA p

‘AB�1ð Þ=2
AB 1� pABð Þ:

(15)

The first term on the right-hand side (rhs) of this equation is
derived as follows: if an AB block starts with an A particle, then
one of its A sites is not bonded to a B site, which gives the factor
NA(1 � pAB); then, there follow (cAB + 1)/2 AB bonds alternating
with (cAB � 1)/2 BA bonds, which gives the factor

p
‘ABþ1ð Þ=2
AB p

‘ABþ1ð Þ=2
BA ; finally, the block ends with a B site not

connected to an A site, which gives the factor (1 � pBA). The
second term is obtained by just exchanging A and B in the
preceding argument: it corresponds to counting the AB and BA
bonds for an AB block that starts with a B particle and ends with
an A particle. Eqn (15) can be simplified using the definitions of
pAB and pBA, with the result

n ‘AB; oddð Þ ¼ 2NA
1=2NB

1=2 1� pABð Þ 1� pBAð Þp‘AB=2AB p
‘AB=2
BA :

(16)

By the same reasoning, the number of AB blocks with even
cAB is

nð‘AB; evenÞ ¼ NA 1� pABð Þ pABpBAð Þ‘AB=2 1� pABð Þ

þNB 1� pBAð Þ pABpBAð Þ‘AB=2 1� pBAð Þ:
(17)

We reiterate that, in order to fulfil symmetry under sequence
inversion, i.e., the requirement that the identity of a block
should be independent of the order in which its sequence is
read, eqn (15) and (17) include a contribution from both:
AB. . .AB and BA. . .BA sequences, for cAB odd; and from AB. . .BA
and BA. . .AB sequences, for cAB even.

The mean block lengths can now be calculated. For AA and
BB blocks, we have

h‘AAi ¼
1

1� pAA
; (18)

h‘BBi ¼
1

1� pBB
: (19)

Notice that these expressions are general, in the sense that they
apply even when NA a NB. The mean length of AB blocks is

h‘ABi ¼

P1
i¼1
ð2i � 1Þnð2i � 1; oddÞ þ 2inð2i; evenÞ½ �

P1
i¼1

nð2i � 1; oddÞ þ nð2i; evenÞ½ �

¼ 1

1� pABpBA

1þ pABpBA þ Fð pAB; pBAÞ

1þ 1

2
Fð pAB; pBAÞ

;

(20)

where

Fðx; yÞ ¼ xð1� yÞ2 þ yð1� xÞ2
ð1� xÞð1� yÞ : (21)

It is readily seen that hcAAi and hcBBi are functions of, respec-
tively, pAA and pBB only, whereas hcABi is a function of pAB and
pBA only. It follows that results do not depend on whether these
blocks are isolated or part of longer chains. Further note that,
by construction, the minimum length of an ab block is 1, when
pab - 0: this is because, in this limit, Nab - 0 and both the
number of ab blocks and their length - 0, but the ratio of
these two quantities - 1.

If NA = NB, in which case pAB = pBA, eqn (20) simplifies to

h‘ABi ¼
1

1� pAB
: (22)

Furthermore, eqn (15) and (17) become identical, leading to

n ‘ABð Þ ¼ 2NA 1� pABð Þ2p‘ABAB : (23)

B. Extension to multiple species

The theory of linear aggregation of the preceding section can be
straightforwardly extended to the case where we have n distinct
chemical species a = S1, S2,. . .,Sn, each decorated with two
identical bonding sites. If, as before, Na is the number of
particles of species a, the total number of particles in the
system will be N ¼

P
a
Na, and their mole fractions xa = Na/N.

Therefore we have a set of n(n + 1)/2 coupled chemical
reactions:

�a + �b " ab, a, b = S1,. . .,Sn, (24)

subject to the n constraints

2Na ¼M�a þ 2Naa þ
X
baa

Nab; a ¼ S1; . . . ; Sn: (25)

In the ideal gas of clusters approximation, the condition of
chemical equilibrium between any pair of species a and b is
given by eqn (6) and similarly the equilibrium constant of each
reaction by eqn (1). The n laws of mass action are obtained as

1� Xa ¼
X
b

1þ dab
� �

xbXaXbKab; (26)

where Xa = M�a/2Na. Accordingly, the results for the block
statistics could be extended to account for the assembly of
more complex architectures.
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As mentioned above, we require some prescription for
finding the equilibrium constants Kab, and thence the prob-
abilities pa and pab. For DNA, perhaps the simplest way is to
compute them using the second equality in eqn (1) with DGab

given by SantaLucia for the nearest-neighbour model.11,12

Alternatively, one can map a microscopic, off-lattice theory of
self-assembly onto the above minimal description. This we do
in the next section; a similar approach has been proposed by
Reinhardt and Frenkel.22

C. Wertheim’s thermodynamic perturbation theory

Wertheim’s thermodynamic perturbation theory (TPT) is a
microscopic theory for the self-assembly of particles interacting
via strong, short-ranged attractions.13,14 It has found novel
applications in the description of the phase behaviour of patchy
colloidal particles.24–26 As in ref. 27, we rather bluntly approx-
imate the solution of DNA sequences as a binary mixture of NA

and NB equisized hard spheres (HSs) of diameter s, contained
in a volume V; the total number density is thus r = (NA + NB)/
V � N/V. The solvent is not explicitly considered. Both species
are divalent: particles of species A are decorated with two
attractive sites, or ‘patches’, of type A, and particles of type B
are decorated with two patches of type B: these represent the
single strands at the end of the DNA sequences. We make
the usual assumption that the patches are distributed over the
spheres’ surfaces in such a way that each patch can only take
part in at most one bond, which is a short-ranged attractive
interaction between two patches, as is appropriate for DNA
bases. We take these inter-patch attractions to be square wells
of depth eab and range chosen such that the volume available to
an ab bond is vabb (a, b = A, B).

Following28,29 the bonding probabilities pab are given by

pAA = 2xxADAAXA
2, (27)

pBB = 2xxBDBBXB
2, (28)

pAB = 2xxBDABXAXB, (29)

pBA = 2xxADABXAXB, (30)

where x = rvHS, with vHS = ps3/6 the volume of a HS, is the (total)
packing fraction, xa = Na/N is the mole fraction of component a
(a = A, B), and Dab are the bond partition functions. In the low-
density, strong-interaction limit, which as we shall see is
appropriate to our simulations, we have

Dab �
vabb
vHS

exp beab
� �

; (31)

In eqn (27)–(30), Xa, the fractions of unbonded sites of type
a = A, B, are given by the following laws of mass action:

1 � XA = 2xxBDABXAXB + 2xxADAAXA
2, (32)

1 � XB = 2xxBDBBXB
2 + 2xxADABXAXB. (33)

Comparing eqn (10) and (32), (11) and (33), and further noting
that the fraction of sites of type a is the same as the mole
fraction of particles of species a, we conclude that the reaction

constants in our minimal description are very simply related to
the bond partition functions:

Kab = xDab. (34)

How can we now relate the parameters of Wertheim’s TPT to
those of SantaLucia? Start by noting that, from eqn (1), (31) and
(34), we have

bDGab = �log(xDab) = �log(rvabb ) � beab. (35)

Recalling that DGab = DHab � TDSab, where Hab and Sab are,
respectively, the enthalpy and entropy of an ab bond, we can
identify

DHab = �eab, DSab = log(rvabb ), (36)

i.e., the change in enthalpy is related to the bond strength, and
the change in entropy to the volume available to the bond. In
actual systems it is often the case that the pressure and volume
vary very little, and the change in enthalpy can thus be equated
to a change in internal energy.30

Wertheim’s theory thus provides an inexpensive alternative
description of the self-assembly statistics in block copolymer
systems, on the basis of very simple model – patchy particles –
whose interaction parameters can be readily related to hybri-
disation enthalpies and entropies. It has exactly the same
structure as the minimal theory of linear aggregation of the
preceding section, so the same accuracy can be expected.

III. Model for DNA

We describe DNA using the oxDNA model.31,32 This is a coarse-
grained model with implicit solvent, which has been shown to
capture the basic thermodynamics, as well as the essential
structural properties, of DNA. It consists of rigid nucleotides,
interacting via pairwise interactions that comprise non-linear
elastic, stacking, cross-stacking, excluded-volume and hydro-
gen bonding contributions; see ref. 32 for details.

The system we investigate is a binary mixture of DNA
nanoparticles.33,34 Each ‘particle’ is made up of a complemen-
tary double helix core X, decorated with identical single
strands, of types a or b, at either end, i.e., the two particle
species are A = aXa and B = bXb. The binding enthalpy of the
a–a, b–b and a–b pairings can be tuned via a judicious choice of
the sticky-end binding sequences. In what follows, we shall take
A(B) to refer interchangeably to either a single strand of type
a(b) or a particle of species A(B). To break the symmetry of the
model, we want to favour BB bonds over AA or AB bonds. We
thus need to find pairs of short self-complementary DNA
sequences A and B that can bind to each other. Preliminary
calculations using Wertheim’s theory suggest rich behaviour is
realised if their hybridisation enthalpies satisfy the conditions

DHAB

DHAA
’ 1;

DHBB

DHAA
’ 1:25: (37)

No condition is set on their hybridisation entropies. The
nearest-neighbour model of SantaLucia11 allows us to compute

Paper Soft Matter



10740 |  Soft Matter, 2021, 17, 10736–10743 This journal is © The Royal Society of Chemistry 2021

these quantities for any given sequence: the values of DH and
DS can be assumed to be temperature-independent at least in a
‘narrow’ range around T = 310 K. In order to fulfil conditions
(37), B is chosen to be the same as A with an extra pair of
complementary nucleotides, one at each end, so that B will
bind to B with greater energy than A to A, but will still be able to
bind to A with roughly the same energy as A to A. The dangling
ends in an AB bond will actually provide an extra contribution,
usually increasing stability of AB with respect to AA, as evalu-
ated in ref. 12; without this stabilizing mechanism there would
be no reason for A and B to form this mixed complex instead of

only AA and BB. This also implies that the condition
DHAB

DHAA
’ 1

is not really attainable, so we should just look for this ratio to
be as close as possible to unity. Two sequences that come close
to these target values are A = CGATCG and B = TCGATCGA,
whose hybridisation enthalpies and entropies are reported in
Table 1. Note that A can bind to A (being ‘palindromic’) with six
bases, B can bind to B with eight bases, and A can bind to B with
six bases.

Cartoons of the particles and of a short chain are shown in
Fig. 1. The bottom panel displays the full base sequences of
particles A and B, using the same colour code as in parts (a)–(c).
The double-stranded core X is 21 base long, significantly longer

than the six and eight bases composing the sticky sequences.
The hybridisation temperature of short DNA sequences
strongly depends on the the number of bases, which guarantees
that the particles’ cores are stable well above the temperature at
which the sticky sequences start to bind. The AA pairs are
spacers used to decouple core and free ends, thus allowing the
latter freely to explore space without mechanical hindrance
from the former. These extra bases are commonly added in
DNA-nanotechnology designs.18,19 If they were not present,
binding would result in a continuous double helix, In order
for such a helix to form, the relative orientations of two
interacting particles would need to be very precisely aligned,
which would significantly affect the binding probability. The
insertion of one or two ‘inactive’ bases allows greater freedom
in the relative orientation of pairs of bonded particles. This
orientational freedom is also expected to yield better agreement
with SantaLucia’s estimate of the binding free energy, which
takes into account only the sticky sequences.

The DNA double helix has a large persistence length, B100
base pairs in relevant conditions,35 so the double-stranded core
of the particles, which is only 21 bases long, is quite stiff. We do
not expect its length (within any reasonable range), or particu-
lar base sequence, to have any effect on results. Note also that
the large persistence length typical of the DNA double helix
disfavours the formation of ring aggregates (as opposed to
linear ones).

IV. Results

We ran constant-volume molecular dynamics (MD) simulations
using the oxDNA open source code for coarse-grained simula-
tions of DNA.31 Using the tools provided by the oxDNA package,
we generated the coordinates of NA = NB = 200 bifunctional
particles of types aXa and bXb, for a total of 800 sticky ends on
400 particles. These 400 particles were then randomly placed in
the simulation box to generate a concentration of single strands
of each species in solution of c E 392 mM, a typical experi-
mental value. We mimicked (recall there is no explicit solvent)
an aqueous solution of salt concentration [Na+] = 0.4 M at
temperatures in the range [40, 58] 1C, where binding is expected
to take place and equilibration can be achieved with the
available computational resources. Individual simulations
required from B200 to B350 microseconds, depending on
temperature. At the lowest investigated temperature (40 1C), the
equations of motion were integrated for 6 � 1010 steps (with a
time step of 0.006 ps), which required eight months on one
Tesla P100 GPU. Equilibration was assessed by monitoring the
time evolution of the potential energy and of the bonding
probabilities The latter are very sensitive indicators, since
equilibration requires multiple bond formation and bond
breaking events at each binding site. We have noticed that
during equilibration AB bonds form first (since A patches are
more attracted to B patches than to other A patches), followed
by a relaxation stage in which some AB bonds will break to
reach their equilibrium value. The equilibration timescale of

Table 1 Relative hybridisation enthalpies and entropies of DNA single
strands used in our simulations, calculated according to ref. 11 and 12

A B
DHBB

DHAA

DHAB

DHAA

DSBB

DSAA

DSAB

DSAA

CGATCG TCGATCGA 1.27 1.09 1.24 1.09

Fig. 1 Cartoons of particles of (A) species A-and (B) species B, made up of
a core of double-stranded DNA and two identical single strands at the
ends acting as bonding sites. On both particle species, two extra bases
(adenine, coloured light pink) on each side of the core have been included
to decouple the free ends from the core. (C) A chain of four particles, one
of species A and three of species B. This BBBA chain is composed of one
BB block of length 2 and one AB block of length 1. The bottom panel
displays the full base sequences of particles A and B, using the same colour
code as in parts (A)–(C).
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the system is thus affected by bond lifetimes, which increase
exponentially with decreasing temperature. We consider a
simulation to have reached equilibrium when the total number
of bonds and all the bonding probabilities oscillate around a
constant value without showing any evident drift.

From the simulation, we estimate the number of A patches
unbonded, bonded with A (NAA) and bonded with B (NAB).
Similar quantities are calculated for B patches. Using the
relations previously introduced we can then estimate pAA �
NAA/NA, pBB � NBB/NB and pAB � NAB=NA, as well as XA and XB.
The resulting probabilities are shown in Fig. 2 as symbols; the
curves are the theory predictions computed as explained below.

From pAA, pBB and pAB we can then predict the chain length
distribution P(n), where n is the number of particles in the
chain. Let s be a sequence of bonded monomers (A or B
particles); the probability of observing that sequence is

PðsÞ ¼ 1� pAð Þm �Að1� pBÞm �BpnABAB pnBABA pnAAAA pnBBBB ; (38)

where m�a is the number of free ends of type a and nab is the
number of sites of type a bonded to sites of type b (with
the constraints m %A + m %B = 2, nAA + nAB + nBB = n � 1). Then
the probability P(n) of observing a cluster (literally a linear
chain) of length n) is found by summing P(s) over all possible
sequences of n monomers:

PðnÞ ¼
X2n

s¼1
PðsÞ: (39)

Fig. 3 compares theoretical predictions and simulation data for
the chain length distribution at all temperatures studied.

To evaluate DGab we first combine eqn (1), (27)–(29) and (34)
to obtain, for xA = xB = 0.5,

pab = XaXb exp(�bDGab). (40)

Eqn (40) can now be solved using the data in Fig. 2, at each T.
Results are plotted in Fig. 4. In all cases, a linear dependence of
DGab on T is observed. The slope and intercept provide the best-
fit values for DHab and DSab, which can then be used backwards
to predict the bond probabilities. These predictions are shown
as solid lines in Fig. 2.

Table 2 compares the best-fit values of DHab and DSab with
the predictions of the SantaLucia model. Though not excellent,
agreement is reasonable, considering that the oxDNA model is
a parametrisation based on SantaLucia estimates for the melt-
ing temperature. Specifically, oxDNA predictions for the melt-
ing temperatures have been found to deviate on average 1.4 1C
from those of SantaLucia.36

Finally, Fig. 5 plots the mean block lengths hcabi, vs. either
temperature (Fig. 5a) or bond probability pab (Fig. 5b). For our
choice of parameters, both AA and AB blocks are very short and
the simulation data are very noisy; agreement between theory
and simulation is encouraging for the longer BB blocks.

Fig. 2 Probabilities pAA, pAB = pBA and pBB of the different types of bonds
between patches, and probability XA(XB) that a A(B) site is unbonded, vs.
temperature, from simulations (symbols) and theory (solid lines). The solid
lines were obtained by solving eqn (40) numerically using DHij and DSij in
Table 2.

Fig. 3 Comparison between expected and simulated chain length dis-
tributions at all temperatures studied.

Fig. 4 Binding free energy of the three complexes AA, BB and AB.
Symbols are the DGab values obtained by solving eqn (40) using the pa,b

from simulation. Solid lines are the linear fits DGab = DHab � TDSab, where
DHab and DSab are taken as temperature-independent fit parameters
(values reported in Table 2).
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V. Conclusions

We have proposed a minimal theoretical framework for the
assembly of linear block copolymers. This makes very few
assumptions on the nature of the monomers, namely: (i)
assembly is assimilated to reversible chemical reactions
between short-ranged bonding sites; (ii) each site can partici-
pate in at most one bond; and (iii) the overall concentration is
low enough that sites and bonds behave as ideal gases. The
theory requires as inputs the reaction constants for the poly-
merisation reactions. Importantly, these can be derived from
theories that incorporate only very limited detail of the actual
molecular processes.

The theory was tested against simulation results for the
assembly of DNA chains from two types of short duplexes, as
described by the oxDNA model, using reaction constants calcu-
lated from SantaLucia’s theory of a lattice model of DNA. This
was found to reproduce the equilibrium block size distribu-
tions, mean block sizes, and fractions of unreacted monomers
fairly well.

The theory is easily generalised to any number of associating
particle species in any proportion. In our view it has the
potential to become a useful tool to predict or reverse-
engineer the architectures of multi-block copolymers or

polycolloids, and even provide some insight into the kinetics
of association.
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36 P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti,
J. P. K. Doye and A. A. Louis, Sequence-dependent thermo-
dynamics of a coarse-grained DNA model, J. Chem. Phys.,
2012, 137, 135101.

Paper Soft Matter




